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Abstract

Damage in structures may render risk of catastrophic failure. Identifying damages and their locations is
termed as damage detection. In this paper, use of digital video imaging is proposed for detecting damage in
structures. The theory of measuring structural vibration using high-resolution images is presented first,
based on sub-pixel edge identification. Then a concept of mode shape difference function is developed for
structural damage detection. A laboratory test program was carried out to implement these concepts using
a high-speed digital video camera. The images were analyzed to obtain displacement time series at sub-pixel
resolution. Mode shapes were obtained from the time series to find the mode shape difference functions
between the damaged and the reference states. They were subjected to wavelet transformation for
determining the damage locations. Results show that the proposed approach is able to identify the
introduced damage cases and their locations.
r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

Many structures in the civil infrastructure system need constant monitoring for deciding on repair,
maintenance, and rehabilitation. Research efforts have been reported in the past for monitoring these
structures using their dynamic characteristics [1], such as the natural frequencies and mode shapes.
see front matter r 2004 Elsevier Ltd. All rights reserved.
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Previously proposed approaches overwhelmingly used accelerometers for measurement, attached to
the structure at a limited number of points. The effectiveness of these approaches still needs to be
demonstrated because the resolution of the acquired data is limited. Such approaches also require
access to the structure, which may be costly or impractical. To circumvent these difficulties, dynamic
digital imaging is proposed here for structural health monitoring. Aspects related to this approach are
briefly reviewed next, before it is fully presented later.
Damage and alteration to structures change their behaviors. If these changes are accurately

measured, they can be used to identify and locate the structural damage and alteration. This
process of identification is referred to as damage detection. Such detection should cover at least
two key aspects: (1) detecting presence of damage, and (2) identifying the damage locations or
neighborhoods. Doebling et al. [1] presented a literature review for damage detection of civil
structures using vibration measurement, and Dimarogonas [2] for vibration-based methods for
detecting cracks in particular. A number of previously proposed methods require a comprehensive
dynamic analysis of the structure including a finite element analysis. This analysis is meant to
establish a reference to be compared with measured results for damage identification. There are
two main issues associated with this approach. (1) It is not always cost-effective to conduct
dynamic analysis of a structure. (2) It is always very costly, if not impossible, to obtain valid
models of finite element analysis for as-built civil structures. Without physical testing, the validity
of these models cannot be confirmed.
During the last two decades, structural dynamic system parameters such as natural frequencies,

damping, and mode shapes have been investigated for their possible use in structural damage
identification and localization. While changes in natural frequencies may be used to detect the
existence of damage, the mode shapes are more important indices for damage location
identification. However, measurements using traditional sensors, such as accelerometers, offer low
spatial resolution for mode shapes, because spatially intensive instrumentation would be costly.
For this reason, digital imaging is considered in this research.
Digital imaging along with image analysis has been used for various applications as monitoring

tool, such as machine tool condition monitoring [3], quality control inspection of electrical devices
[4], visual inspection of computer integrated manufacture [5], identification of road curvature and
vehicular motion [6], and automatic vision system for steel quality inspection [7]. Furthermore,
computer vision has been used for automated defect classification for semiconductor chips [8], and
for detecting and tracking road edges from images [9].
The information on the movement of an imaged object can be obtained by accurately

identifying the object’s boundaries in subsequent video images. These boundaries are called edges
and their determination is referred to as edge detection. Depending on the accuracy requirement,
edge detection may be done at pixel or sub-pixel level. Previously proposed edge detection
procedures at pixel level may be categorized as follows. (1) Fitting the image data with a
predefined model to extract edge information [10,11]. (2) Applying an edge operator or filter to the
image data to identify the edge [12–17]. (3) Equalizing the theoretical spatial moments of an image
model to those of the image data and then solving for the model’s parameters [18]. (4)
Determining the zero crossing of the image data subjected to the Laplacian of Gaussian mask as
the edge’s location [19,20]. (5) Applying the fuzzy set concept to estimate the edge parameters
[21,22]. Edge detection at pixel level is not sufficient for the precise measurement required here,
since it yields only integer values of pixels as the edge location.
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Edge detection algorithms at sub-pixel level use information from neighboring pixels to
determine the edge location within a pixel [23]. Typical approaches of sub-pixel edge detection are
as follows. (1) Fitting a predetermined edge model to the image data [24]. (2) Convolving image
data with predefined filters having sub-pixel accuracy [25]. (3) Non-linearly interpolating the
image data [26]. (4) Equalizing spatial moments of a selected edge model and the image data to
solve for the edge parameters in the model [27]. However, these previously proposed approaches
still do not meet the resolution requirement for civil structural health monitoring and damage
detection. The work reported in this paper attempts to address this issue, by developing a new
edge detection algorithm at sub-pixel level for high accuracy.
For damage presence detection and their location determination, previous research efforts have

been reported that use the difference between the mode shape’s derivatives of intact and damaged
(cracked) states of the structure, which result in spikes at the location of damage [28–31]. It is
inferred that lower modes can be more useful than higher ones in such application [32]. However,
for using the mode shape’s derivatives, the measured data need to have high spatial resolution and
low noise for reliable estimation of damage location. Hence, the difference in mode shapes for the
damaged and reference states is to be used here in damage location identification, because mode
shapes are less sensitive to noise.
Recently, wavelet transformation has found wider application in decomposing data to localize

and zoom in their local characteristics [33,34]. A review is provided by Peng and Chu [35] of
available wavelet transformation methods and their application to machine condition monitoring.
Liew and Wang [36] found that crack location could be indicated by the variation of some wavelet
coefficients along the length of a structural component. Furthermore, Wang and Deng [37] and
Quek et al. [38] demonstrated the potential of Haar Wavelet transformation for damage detection.
Hong et al. [39] presented damage detection for a beam structure using the Lipschitz exponents
estimated by wavelet transform. The magnitude of Lipschitz exponent was used as an indicator of
damage extent. Both numerical and experimental verification were shown utilizing the continuous
Mexican Hat Wavelet transformation having two vanishing moments for determining the
Lipschitz exponent. It was concluded that the first mode shape is more useful than higher ones in
the exponent estimation and thus in detecting damage. Lu and Hsu [40] presented a wavelet
transform-based method for the detection of structural damage, by comparison of the discrete
wavelet transforms of the signals before and after damage in the spatial domain.
In this paper, video imaging is used for data acquisition for structural damage detection. A new

edge detection algorithm is developed for highly accurate displacement measurement. Then a
mode shape difference function is introduced and is experimentally obtained from the mode
shapes of the reference and damaged states. The wavelet transformation is applied to the resulting
mode shape difference function for diagnosis. This approach offers the advantage of spatially
intensive vibration measurements, leading to higher resolution in damage location identification.
The scope of this research was the development of structural health monitoring technique for

highway bridges, many of which are beam type structures. 3D digital imaging along with 3D edge
detection is being investigated for determining the coordinate of the point of interest in the
structure [41]. There is strong possibility of this method becoming applicable to a complex
structure, if the damage in a complex structure changes its global dynamic behavior. Furthermore,
if the complex structure permits to have its image taken from three or more angles, then the
structures’ 3D coordinates are determined from the image. Hence, the employment of three or
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more digital video camera from different angles to image the structure with a simultaneous trigger
mechanism gives a 3D measurement for the complex structure. With subsequent image analysis
3D coordinates of the structure in movement can be obtained which in turn provide time series
information. The rest of the procedure remaining the same, such as modal analysis, mode shape
extraction and further post-processing of such information using tools like wavelet transforma-
tion should make this method applicable to complex structures.
2. Theoretical developments

2.1. Image formation and sub-pixel edge detection

In digital images, objects may be identified using their outlines or edges. Typically, an edge in a
monochrome image is located as a sharp change in the gray level. This change typically occurs
over a number of neighboring pixels. Depending on the edge’s characteristics several models have
been proposed to describe them. The most popular ones are the step-, roof-, and ramp-edges [42].
Edges also convey information on the scene content, which is also used to identify the imaged
environment in human visual systems. To realistically model edges for identifying them, it is
important to understand the process of image formation. In the following section, the image
formation process in a digital camera is discussed along with presenting the proposed sub-pixel
level edge identification.
An ideal 1D step edge at location d on the x-axis can be defined as

W ðxÞ ¼ h þ kyðx � dÞ; (1)

where W(x) is the intensity level, h the background intensity, k the step height or edge contrast,
and y the unit Heaviside function, as shown in Fig. 1.
The edge in Eq. (1) is never imaged as an ideal edge. As outlined in Fig. 2, the image formation

process involves optical blurring, digitization, and noise generation and addition to the image.
They result in deviation from the ideal step edge function. Hence, recorded blurred edges are
modeled here as the convolution of the ideal step function (Eq. (1)) with an impulse response
)
(x

W

)( dxkh −+ θ

h

dx = x

Fig. 1. 1D ideal edge (edge location at x ¼ d).
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function, the normal probability density function with variance a2 defined as follows:

W 0ðxÞ ¼

Z 1

�1

ðh þ kyðx � d � tÞÞ
1ffiffiffiffiffiffi
2p

p
a
e�t2=2a2

� �
dt

¼ h þ kFaðx � dÞ; ð2Þ

where Faðx � dÞ is the cumulative probability function for the normal variable with mean d and
variance a2. W0(x) represents the distribution of the light intensity received by the imaging sensor.
Accordingly each pixel i’s gray level G(i) is modeled as a result of photon accumulation:

GðiÞ ¼

Z iþ1=2

i�1=2
ðh þ kFaðx � dÞÞdx: (3)

Eqs. (1)–(3) can be readily extended to the 2D situation using a second-order polynomial for the
edge:

W 0ðx; yÞ ¼ h þ kFaðy � ðPx2 þ Qx þ RÞÞ; (4)

where 2P is the edge curvature, Q the edge slope at x ¼ 0; R the y intercept (edge location at
x ¼ 0), a the blurring factor, h the intensity level of background, and k the difference of intensity
over the edge (i.e., contrast).
Accordingly, the gray level G(i, j) is modeled as a result of an accumulation process as follows:

Gði; jÞ ¼

Z jþ0:5

j�0:5

Z iþ0:5

i�0:5
W 0ðx; yÞdxdy ð�IpipI ; �JpjpJÞ; (5)

where i and j are identification indices of the pixel. Fig. 3 depicts an example of gray level
distribution according to Eq. (5). The parameter values for P, Q, R, h, k, and a are also shown in
the figure, along with the ranges I and J for i and j (from –100 to +100 for both). The ranges I and
J in the two perpendicular directions define a window of the image used for edge identification
computation.
In order to determine the six edge parameters (P, Q, R, h, k, and a) for identifying the edge

location, slope, and curvature, a least-square curve fitting algorithm is proposed here as an
optimization process. The objective function D to be minimized is defined here as the difference of
the gray levels in the real image and generated according to the edge model

D ¼
X

i

X
j

½Gði; jÞ � ~Gði; jÞ
2 ð�IpipI ; �JpjpJÞ; (6)

where G(i, j) is the gray level according to the model (Eq. (5)) with the six parameters to be
identified, and ~Gði; jÞ is the gray level in the real image. The solution procedure is given in
Appendix A, which takes the advantage of closed-form derivatives of the objective function D
with respect to the edge parameters (P, Q, R, h, k, and a). This approach was taken to minimize
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Fig. 3. 2D edge model of light intensity (P ¼ 0:01; Q ¼ 0:01; R ¼ �30:00; h ¼ 0:00; k ¼ 256:00; a ¼ 1:00).
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the computation time. It also maximizes the solution’s accuracy because it eliminates numerical
differentiation that is sensitive to noise.

2.2. Vibration time series from sequence of images

A digital video camera can form a sequence of images to record an object’s motion. Due to
commercial availability of high-speed digital video cameras (up to 40,000 frames/s at present),
typical mechanical oscillation can be readily captured. Then, time series of the vibrating object
can be obtained using image processing techniques. The edge identification method presented
above has high resolution and accuracy for this purpose. The following procedure is used here for
time series information extraction, and is also shown in the flowchart of Fig. 4: (1) Acquire images
of a scale object (with known dimensions) along with the object whose motion is to be measured.
Extract edge information (location, slope, and curvature) in the obtained images for the scale
object and determine the scaling factor (in length per pixel). (2) Acquire baseline images of the
interested object not in motion, and extract edge information from them. (3) Take images when
the interested object is in motion, and extract edge information from the motion images. (4) Find
the object’s relative motion by subtracting the baseline edge information (from Step (2)) from the
motion edge information (from Step (3)). Repeat this step for all images. (5) Multiply the scaling
factor to the result of Step 4 to obtain motion time series in proper dimensional unit.

2.3. Mode shape difference function

The mode shapes of a structure describe the relative motion relationship of various points of the
structure. When damage occurs at one or more of these points, this relative relationship will
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change. This change is used here for damage detection, focusing on the difference of the mode
shapes before and after structural damage.
For ease of demonstration, a simply supported prismatic beam is considered here,

using its intact and damaged states. It is assumed that the beam’s mass remains constant
after damage and only the structure’s stiffness is changed due to the damage. Let m̄ be the
constant mass. The flexural stiffness of the beam is a constant EĪ0 when the beam is intact,
and EI0(x) when it has a crack. The stiffness of the damaged beam is modeled as follows,
including a crack:

EIðxÞ ¼ EĪ0 1� Ce�ðx�a=sÞ2
� �

; (7)

where a, C, and s are, respectively, the crack’s location, depth ratio, and characteristic width, and
x is measured from the left support. E and Ī0 are the Young’s modulus and the intact moment of
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Fig. 5. Schematic diagram of damaged beam.
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inertia of the beam. A schematic diagram of Eq. (7) is shown in Fig. 5 for a damaged beam. The
purpose of using the continuous function in Eq. (7) to model a supposedly discontinuous crack is
to allow a closed form solution. For very small cracks, the solution may be used with the
characteristic width approaching to zero. The equation of free vibration motion for the beam is
written as follows considering only the flexural effect:

q2

qx2
EIðxÞ

q2vðx; tÞ
qx2

� 	
þ m̄

q2vðx; tÞ
qt2

¼ 0; (8)

where v(x,t) is the displacement of the beam perpendicular to its axis, at location x for time t.
Separating the temporal and spatial variables as follows can help readily solve this equation:

vðx; tÞ ¼ fðxÞY ðtÞ; (9)

where Y(t) is a function of time, and f(x) is the mode shape function. The latter has the form in
Eq. (10) for the intact state and Eq. (11) for the two segments of the damaged beam separated by
the crack, respectively:

fðxÞ ¼ A1 cos lx þ A2 cosh lx þ A3 sin lx þ A4 sinh lx (10)

f1ðxÞ ¼ A11 cos lx þ A12 cosh lx þ A13 sin lx þ A14 sinh lx for 0pxpa

f2ðxÞ ¼ A21 cos lx þ A22 cosh lx þ A23 sin lx þ A24 sinh lx for apxpL
(11)

where L is the length of the beam. The mode shapes are required to satisfy the following boundary
conditions for the two states, respectively:

fð0Þ ¼ 0; fðLÞ ¼ 0;
q2fðxÞ
qx2






x¼0

¼ 0;
q2fðxÞ
qx2






x¼L

¼ 0; (12)
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f1ð0Þ ¼ 0; f2ðLÞ ¼ 0;

q2f1ðxÞ
qx2






x¼0

¼ 0;
q2f2ðxÞ
qx2






x¼L

¼ 0;

f1ðaÞ � f2ðaÞ ¼ 0;
q2f1ðxÞ
qx2






x¼a

�
q2f2ðxÞ
qx2






x¼a

¼ 0;

q3f1ðxÞ
qx3






x¼a

�
q3f2ðxÞ
qx3






x¼a

¼ 0;
qf1ðxÞ
qx






x¼a

�
qf2ðxÞ
qx






x¼a

¼
sC

1� C
L

q2f2ðxÞ
qx2






x¼a

; ð13Þ

where l4 ¼ o2m̄=ðEĪÞ with o2 being the natural frequency of the beam. Coefficients A1i and A2i

ði ¼ 1; . . . ; 4Þ in Eq. (11) can be solved using the boundary conditions in Eq. (13). This solution
process results in a set of eight homogeneous linear algebraic equations for the eight unknown
coefficients. Subsequently, the following natural frequency equation is obtained to have non-
trivial solutions to the homogenous equations:

sin lL sinh lL þ
sCLl
2ð1� CÞ

ðsin al sinða� LÞl sinh Ll

� sin Ll sinh al sinhða� LÞlÞ ¼ 0: ð14Þ

As shown, the natural frequencies are functions of characteristic crack width s; crack location
a; and crack depth ratio C. Furthermore, using the obtained frequencies in the eight boundary
conditions in Eq. (13) leads to the mode shapes

f1ðxÞ ¼ A13 sin lx þ
sin lL sinh lðL � aÞ sinh lx

sin lðL � aÞ sinh lL

� �
; for 0pxpa

f2ðxÞ ¼

A13

sin lL cosh lðaþ L � xÞ � cosh lða� L þ xÞ
� �

þ sinh lL cos lða� L þ xÞ � cos lðaþ L � xÞ
� �

2 sin lðL � aÞ sinh lL
;

for apxpL ð15Þ

Once the mode shapes for both the intact and damaged beams are known, their difference can
be readily calculated as:

f ðxÞ ¼ f1ðxÞ � fðxÞ; for 0pxpa; f ðxÞ ¼ f2ðxÞ � fðxÞ; for apxpL: (16)

This mode shape difference function has a maximum magnitude at the location of damage or
discontinuity. A numerical example of this function is shown in Fig. 6 for the first mode of a
100 cm long beam having C ¼ 10% at the locations indicated. It is seen that the mode shape
difference functions reach the maximum values at the crack locations.
In practical applications, the reference state may not be the intact state. For such a situation

Fig. 7 shows the mode shape difference functions between two damage states. They are (1)
damage at a ¼ 30 cm and (2) damage at both a ¼ 30 cm and a ¼ 70 cm: For reference, each
damage state’s mode shape difference function compared with the intact state is also shown. It is
seen that the mode shape difference function between the damage state with a ¼ 30 cm and the
intact state has one maximum at the damage location. For the case of a ¼ 30 and 70 cm the
function has two peak values corresponding to the two damage locations. The same function
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Fig. 6. Analytical first mode shape’s difference functions between intact and damaged beams: C ¼ 10%; s ¼ 0:001; and
a as –m–, 10 cm; –� –, 20 cm; –~–, 30 cm; — -—, 40 cm; and –~–, 50 cm.

Fig. 7. Analytical first mode shape’s difference functions between two states (C ¼ 10%; s ¼ 0:001), for: –~–, damage
at 30 cm vs. intact; —J—, damage at 30 and 70 cm vs. intact; and –&–, damage at 30 and 70 cm vs. damage at 30 cm.
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Fig. 8. Synthetic noisy mode shape difference function (C ¼ 10%; a ¼ 30 cm).
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between the two damage cases has only one peak at a ¼ 70 cm since the damage at a ¼ 30 cm has
not changed.
Note also that noise is inevitable in experimental data. To demonstrate the effect of noise on

mode shape difference function, Fig. 8 shows a synthetic noisy mode shape difference function for
C ¼ 10% and a ¼ 30 cm: The noise is Gaussian and has a standard derivation equal to 20% of the
function’s average. It is also periodic with 6 cycles over the beam length.
Moreover, applicability of the mode shape difference function for a plate type structure is

explored for a simply supported steel plate (50 cm� 50 cm� 1.5 cm). Intact state and damaged
state (0.50 cm� 0.50 cm� 0.50 cm damage at x ¼ 16:5 cm; y ¼ 25 cm) mode shapes were obtained
using the ABAQUSs finite element program. The mode shape difference function is obtained for
the first mode shape of plate structure and is shown in Fig. 9, which affirms the applicability for
plate type structures.

2.4. Wavelet transformation and damage detection

The classical Fourier transformation portrays a signal record as superposition of infinite
sinusoidal waveforms of assorted frequencies representing an orthogonal basis. Due to the fixed
frequency basis used, the Fourier decomposition is suitable for signal records having relatively
stationary frequency characteristics throughout their entire length. On the other hand, the wavelet
transformation uses special sets of basis that are localized both in the original (e.g., the time) and
the transformed (e.g., the frequency) domains [33,43–46]. Hence, the wavelet transformation is
more suitable for analyzing non-stationery signal records, such as those with discontinuities or
sudden (i.e., local) changes. The mode shape difference function defined in Eq. (16) is seen to have
such local changes at the damage locations. They can be more effectively identified using wavelet
transformation.
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Fig. 9. Analytical first mode shape’s difference function between damaged and intact simply supported plate of

50 cm� 50 cm� 1.5 cm size (0.50 cm� 0.50 cm� 0.50 cm damage at x ¼ 16:5 cm; y ¼ 25 cm).
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The orthonormal basis function for wavelet transformation can be expressed as:

gðs; c; xÞ ¼
1ffiffi
s

p C
x � c

s

� �
; (17)

where s is a scale parameter, c the translation parameter, and C the mother wavelet function
satisfying the conditions of zero mean, finite energy (i.e., finite L2 norm), and band passing, i.e.,
the frequency response decays sufficiently rapidly as o ! 1 and is zero as o ! 0 [47]. Note that
both wavelet and Fourier transformations can be viewed as mapping the signal record in one
space to another. A major difference between them, because of the different basis functions used
and the flexibility of the wavelet transform, is that the wavelet transformation is able to localize
non-stationery behavior that cannot be easily portrayed by Fourier transformation. For the
application of structural damage detection, the wavelet transformation is advantageous. It is
because the transformation window can vary by adjusting s and c in Eq. (17) to isolate and
identify possibly different discontinuities or non-stationery behaviors in the signal record in
different resolutions. These behaviors are due to structural damages and therefore they can be
used to detect the damage locations.
In this study, the wavelet transformation is used to analyze signal records in the spatial domain

x. Thus the transformed domain of s represents spatial period. Without loss of generality,
consider a spatial signal f(x), e.g., as defined in Eq. (16) over the space x 2 0;L½ 
: The wavelet
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transform for the signal record is defined in the same domain as

cðs; cÞ ¼
Z L

0

f ðxÞgðs; c; xÞdx; (18)

where cðs; cÞ is the transformed wavelet coefficients for scale parameter s and translational
parameter c, and gðs; c;xÞ is the conjugate function of g(s,c,x) defined in Eq. (17).
For detecting local changes in f(x), it is important to choose an appropriate mother wavelet C;

i.e., able to easily portray the changes and also not very sensitive to data noise. In this regard
continuous transformation is advantageous to discrete transformation since it allows both the
scale and translation parameters to vary in a continuous manner. Furthermore, a mother wavelet
function is effective if it is able to portray discontinuity in the derivatives of f(x) in the original and
transformed domains. Hence, the continuous complex Gaussian wavelet is selected here:

CðxÞ ¼ Dn
qn
ðe�ixe�x2Þ

qxn
; (19)

where i ¼
ffiffiffiffiffiffiffi
�1

p
; n indicates the order of the wavelet, and Dn is a constant to make the second

norm (L2) of the function’s nth derivative unity. Fig. 10 shows this wavelet function of second
order ðn ¼ 2Þ: Since the wavelet function is complex, the wavelet coefficientCðs; cÞ will be complex
according to Eq. (18). One may use the wavelet coefficients in both the original (spatial location)
and the transformed (spatial period) domains to determine damage location, corresponding to the
locations of the wavelet coefficients’ maxima modulus and change in phase angle. Fig. 11 shows
Fig. 10. Second order complex Gaussian function C (Eq. (19)) in effective support width of [�5,5] (c ¼ 0; s ¼ 1): (a)

real part, (b) imaginary part, (c) modulus, and (d) phase angle of function.
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the wavelet coefficients as functions of translation and scale parameters c and s for the mode
shape difference function defined in Eq. (16) and plotted in Fig. 6, with C ¼ 10%; a ¼ 30 cm; and
s ¼ 0:0001: Fig. 11(a) and (b) show the real and imaginary parts of cðs; cÞ defined in Eq. (18). Fig.
11(c) and (d) show the modulus and phase angle of the same function. They are displayed in the
3D format, with s and c as variables. Fig. 11(e), (g), and (i) show more details of the modulus for
the given s values, and Fig. 11(f), (h), and (j) for the phase angle. Examining the modulus and the
phase angle in Fig. 11(e)–(h), it is easy to determine the damage location, where the modulus
reaches maximum and the phase angle changes its sign. When scale s becomes larger the effective
support window of the wavelet [�2.5s, 2.5s] can be beyond the spatial domain [0, L]. The resulting
transform will not fully portray f(x). This is referred to as edge influence. Note that effective
support window is based on the total energy concentrations with respect to effective window size
as described in Table 2. Fig. 11(i) and (j) show an example of significant edge influence, where the
maximum modulus does not occur with phase angle sign change. These locations should not be
diagnosed as the damage locations, which deserve attention in damage location identification.
Another important factor affecting diagnosis is noise in the measured data. To investigate this

effect, Fig. 12 shows the wavelet transform for the same mode shape difference function but with
noise given in Fig. 8. Comparison of Figs. 11 and 12 can help to identify the effect of noise. When
there is noise, finer scales s less than 100 results in noisy details shadowing the real damage
location, as shown in Fig. 12 (a)–(d). The high frequency noise is ‘‘filtered out’’ when s becomes
large, as seen in Fig. 12(e)–(h), and the damage location can be readily identified there. Therefore
it is important to decide which scale levels should receive attention in identifying damage location.
3. Application experiments and results

The proposed concept of structural damage detection using high-resolution images was
experimented in the laboratory. A simply supported prismatic steel beam was used as a structural
model, to provide vibration measurement data for its intact and damaged states. The beam is
15.24 cm wide, 0.635 cm thick, and 110.5 cm long. Two damage states were realized by saw cut
with depth of 2.5 and 2.2 cm (C ¼ 16:40% and 14.40% in Eq. (7)), respectively, at locations
a ¼ 34:3 and 74.0 cm from the left support of the beam as defined in Fig. 5. The two damage states
are referred to as D1 and D2, respectively. Note that state D2 actually included state D1, since the
latter was not revoked when the second damage was introduced. The beam’s free vibration was
recorded using a video camera, excited by imposing an initial displacement at 45.0 cm from the left
support. The digital motion images were captured using a Nac Memrecam fx K3 digital video
camera. The camera has a CMOS sensor with a 1280� 1024 resolution and a 10-bit A/D
converter. The camera is equipped with a 1.3 GB onboard memory and its frame rate ranges from
100 to 2000 frames/s.
The test setup is shown in Fig. 13. The procedure shown in Fig. 4 was followed for image taking

and processing. First, the baseline (not in motion) images along with the scale object were taken.
In the vertical direction, intended to be the direction of measured vibration displacement, a scale
object (with two white marks) was used to allow acquisition of the scaling factor. These images
were used to determine the scaling factor as 0.0714502 cm/pixel. Then, the intact beam was excited
and its free vibration motion was captured at a rate of 1000 frames/s for a 1-s duration. These
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Fig. 11. Complex Gaussian wavelet coefficients of analytical mode shape difference function (C ¼ 10%; a ¼ 30 cm; and
s ¼ 0:001): (a) real coefficients, (b) imaginary coefficients, (c) modulus of coefficients, (d) angle of coefficients, (e)
modulus at s ¼ 133; (f) angle at s ¼ 133; (g) modulus at s ¼ 200; (h) angle at s ¼ 200; (i) modulus at s ¼ 400; and (j)
angle at s ¼ 400:

U.P. Poudel et al. / Journal of Sound and Vibration 286 (2005) 869–895 883
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Fig. 12. Complex Gaussian wavelet coefficients of noisy analytical mode shape difference function of Fig. 8 (C ¼ 10%;
a ¼ 30 cm; and s ¼ 0:001): (a) real coefficients, (b) imaginary coefficients, (c) modulus of coefficients, (d) angle of
coefficients, (e) modulus at s ¼ 133; (f) angle at s ¼ 133; (g) modulus at s ¼ 200; (h) angle at s ¼ 200; (i) modulus at
s ¼ 400; and (j) angle at s ¼ 400:
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Fig. 13. Laboratory test setup.
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images were processed using a personal computer for edge detection and displacement
identification as presented earlier. The obtained time series of the beam in motion was used to
extract dynamic properties for the intact beam. Then the beam was damaged using saw cut to its
backside, so that the damage was not seen on the imaged front edge in edge identification. The
same procedure was followed to obtain the time series of the beam with damage. A total of 16 sets
of video were recorded each consisting of 1001 images. Eight sets were for the intact state and four
for each of the two damage states.
The images were analyzed using the proposed sub-pixel edge identification procedure using a

window size of I ¼ 50 and J ¼ 7 pixels for analyzing each available data point (pixel) along the
beam length. The edge location, slope, and curvature of the beam were determined. Each image
took about 5min of processing time using a PIV IBM compatible PC with a 3.06GHz
microprocessor and a 1024MB onboard memory. Fig. 14 shows a typical set of vibration time
series for the intact beam. There are 1001 data points (i.e., images) in the time domain and 1131
data points in the spatial domain along the beam length. This time series shows that high-
resolution video cameras are able to provide spatially intensive measurements, more cost-
effectively than traditional sensors, such as dial gages, linear variable differential transformers
(LVDT), and accelerometers.
The time series data from 1131 spatial points for 1-s duration were then processed using the

MEscope Ves software [48] to obtain the natural frequencies, modal damping ratios, and mode
shapes. Table 1 shows the first natural frequency and associated damping ratio for the intact and
damaged states. Fig. 15 shows the corresponding mode shapes. Fig. 16 displays the mode shape
difference function for the two damage cases, referring to different states as given in the legend
Table 2.
The mode shape difference functions were then subjected to the second-order complex

Gaussian wavelet transformation defined in Eq. (19) with n ¼ 2; with scale s ranging from 1 to 512
pixels. The results are shown in Figs. 17–19. Smaller values of scale correspond to higher spatial
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Fig. 14. Typical displacement time series for beam.

Table 1

First natural frequency and damping of intact and damaged beams

Replicate ID Undamaged state Damaged state

Frequency (Hz) Damping (%) D1 D2

Frequency (Hz) Damping (%) Frequency (Hz) Damping (%)

1 11.738 0.32 11.575 0.39 11.459 0.36

2 11.755 0.41 11.592 0.40 11.454 0.33

3 11.737 0.38 11.573 0.39 11.466 0.38

4 11.74 0.38 11.609 0.45 11.478 0.43

5 11.757 0.40 —

6 11.762 0.45

7 11.757 0.43

8 11.743 0.39
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frequencies (which are able to portray a higher number of discontinuities in the spatial domain
along the beam length). In contrast, larger values of scale s correspond to lower spatial
frequencies, useful for identifying a smaller number of changes or damage. Nevertheless, when the
scale becomes large the edge influence also increases, as discussed earlier. The effective window for
the mother wavelet function in Eq. (19) is about 5s+1 pixels. Thus the maximum s beyond which
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Fig. 15. First mode shapes for intact state and damage states: (a) intact state mode shape, (b) damage state (D1) mode

shape, and (c) damage state (D2) mode shape.
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the edge influence will be present can be found as soðN � 1Þ=5 � 226; where N is the
number of data point (1131). According to the discussion on data noise earlier, so150 should
be also neglected considering the noise in the data. It is seen in Fig. 17(e)–(h) that the damage
location can be identified at 33 cm with maximum modulus and sudden phase angle change.
Note also that Fig. 17(i) and (j) show that the damage location is slightly shifted due to the
edge influence.
Fig. 18 shows similar results for damage state D2 (C ¼ 16:40% at a ¼ 34:3 cm and C ¼ 14:4%

at a ¼ 74:0 cm) referring to the intact state. The damage locations are identified at 30 and 78 cm
where modulus maximum and phase angle sign change occur. If state D1 is used as the reference,
Fig. 19 shows the result for state D2 for damage identification. Fig. 19(e)–(h) show the additional
damage beyond state D1 at 78.75 cm, where both modulus maximum and phase angle sign change
are observed.
4. Conclusions

A new approach to spatially intensive data acquisition is introduced and demonstrated here
using a high-speed digital video camera. This non-contact method can be useful for structural
damage detection when the structure is not easily accessible, which is often the case for civil
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Fig. 16. First mode shape’s difference functions between damaged and reference states: (a) damage state (D1) vs. intact,

(b) damage state (D2) vs. intact, and (c) damage state (D2) vs. damage state (D1).

Table 2

Total energy concentrations with respect to effective window size

S. No. Window size (7)
Energy percentage

R s

�s
jcðxÞj2dxR1

�1
jcðxÞj2dx

� 100%

� �

1 0 0

2 0.5 58.59

3 1.0 84.65

4 1.5 97.07

5 2.0 99.81

6 2.5 99.99

7 3.0 100.0

8 3.5 100.0

9 4.0 100.0

10 4.5 100.0

11 5.0 100.0
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structures. The resulting spatially intensive data are much preferred over traditional point
measurement data via, e.g., LVDTs and accelerometers. Using spatially intensive time series data
and thereby derived data, mode shape difference between the reference and damaged state is
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Fig. 17. Complex Gaussian wavelet coefficients of mode shape difference function between D1 and intact state: (a) real

coefficients, (b) imaginary coefficients, (c) modulus of coefficients, (d) angle of coefficients, (e) modulus at s ¼ 150; (f)
angle at s ¼ 150; (g) modulus at s ¼ 226; (h) angle at s ¼ 226; (i) modulus at s ¼ 452; and (j) angle at s ¼ 452:
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Fig. 18. Complex Gaussian wavelet coefficients of mode shape difference function between D2 and intact state: (a) real

coefficients, (b) imaginary coefficients, (c) modulus of coefficients, (d) angle of coefficients, (e) modulus at s ¼ 150; (f)
angle at s ¼ 150; (g) modulus at s ¼ 226; (h) angle at s ¼ 226; (i) modulus at s ¼ 452; and (j) angle at s ¼ 452:

U.P. Poudel et al. / Journal of Sound and Vibration 286 (2005) 869–895890
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Fig. 19. Complex Gaussian wavelet coefficients of mode shape difference function between D2 and D1 damaged states:

(a) real coefficients, (b) imaginary coefficients, (c) modulus of coefficients, (d) angle of coefficients, (e) modulus at

s ¼ 150; (f) angle at s ¼ 150; (g) modulus at s ¼ 226; (h) angle at s ¼ 226; (i) modulus at s ¼ 452; and (j) angle at
s ¼ 452:

U.P. Poudel et al. / Journal of Sound and Vibration 286 (2005) 869–895 891
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introduced as the index of structural health. For damage location identification the mode shape
difference function is subjected to second-order complex continuous Gaussian wavelet
transformation. The results have been successfully used in detecting damages and their locations
despite noise in the measured data.
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Appendix A

Least-Square Curve Fitting Method of Optimization
The least-square fitting method is implemented using the following procedure:
(1) Estimate an initial vector for the unknown parameters.

~Vk at k ¼ 0) ~V0 ¼

P0

Q0

R0

h0

k0

a0

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;

(A.1)

(2) Find Dð~VkÞusing Eqs. (6) and (5).
(3) Find the gradient vector of D at ~Vk as

~g ¼
qDð~VkÞ

q~V
)~g ¼

qDð~V kÞ

qP

qDð~V kÞ

qQ

qDð~V kÞ

qR

qDð~V kÞ

qh

qDð~V kÞ

qk

qDð~V kÞ

qa

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

¼
X

i

X
j

2½Gði; jÞ � ~Gði; jÞ


qGði;jÞ
qP

qGði;jÞ
qQ

qGði;jÞ
qR

qGði;jÞ
qh

qGði;jÞ
qk

qGði;jÞ
qa

8>>>>>>>>>>><
>>>>>>>>>>>:

9>>>>>>>>>>>=
>>>>>>>>>>>;

(A.2)
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(4) Find the Hessian matrix of D at ~Vk as

H½ 
 ¼
q2Dð~VkÞ

q~V
2

) H½ 
 ¼

q2Dð~VkÞ

qP2
q2Dð~VkÞ

qPqQ
� � �

q2Dð~V kÞ

qPqa

q2Dð~VkÞ

qPqQ
q2Dð~VkÞ

qQ2 � � �
q2Dð~V kÞ

qQqa

..

. ..
.

� � � ..
.

q2Dð~VkÞ

qPqa
q2Dð~VkÞ

qQqa
� � �

q2Dð~V kÞ

qa2

2
66666664

3
77777775

(A.3)

(5) Find ‘‘S’’ in the following equation so that D is minimized

~Vkþ1 ¼ ~Vk � S½Hð~VkÞ
~gð~VkÞ (A.4)

(6) If j~Vkþ1 � ~Vkjp�; where e is a predetermined small number as the criterion for convergence,
then stop searching and the problem is solved. If this criterion is not met, set ~Vk ¼ ~Vkþ1 and go
back to step 2.
The theoretical derivation for ~g and [H] in Eqs. (A.3) and (A.4) was carried out analytically,

and the optimization procedure was coded in C++. This optimization process yields edge
location, slope, and curvature.
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